We consider radial solutions with an isolated singularity for a semilinear equation involving the fractional Laplacian. In conformal geometry, this is equivalent to the study of singular metrics with constant fractional curvature (singular fractional Yamabe problem). Our main ideas are: first, to set up the problem into a natural geometric framework; and second, to reduce the problem to a non-local ODE for which we are able to perform some kind of phase portrait study.

Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry / Delatorre, A.; Gonzalez, M. D. M.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1645-1678. [10.4171/rmi/1038]

Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry

DelaTorre A.;
2018

Abstract

We consider radial solutions with an isolated singularity for a semilinear equation involving the fractional Laplacian. In conformal geometry, this is equivalent to the study of singular metrics with constant fractional curvature (singular fractional Yamabe problem). Our main ideas are: first, to set up the problem into a natural geometric framework; and second, to reduce the problem to a non-local ODE for which we are able to perform some kind of phase portrait study.
2018
Cylinder; fractional laplacian; fractional Yamabe problem; isolated singularities; non-local ODE; radial solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry / Delatorre, A.; Gonzalez, M. D. M.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 34:4(2018), pp. 1645-1678. [10.4171/rmi/1038]
File allegati a questo prodotto
File Dimensione Formato  
DelaTorre_Isolated-singularities_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 531.79 kB
Formato Adobe PDF
531.79 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1591021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact